Model-Based Development (MBD) Coming soon to a theater near you

Resolving MBD against DO-178B

Mike DeWalt Chief Scientist, Aviation Systems Certification Services, Inc. +1.360.376.8110 voice

2005 Software/CEH Conference Mike. De Walt@certification.com

Goals

- Graphical vs. textual debate
- High- and low-level requirements, tool use
- Tool qualification
- Tool credit and DO-178B
- The great execution debate
- Examples

A tool for all seasons

MBD with and without tool qualification

CSI

Graphical vs. textual debate

DO-178B definitions of high- and low-level requirements

- <u>High-level requirements</u> Software requirements *developed from* analysis of *system* requirements, *safety*-related *requirements*, and system *architecture*.
- <u>Low-level requirements</u> Software requirements *derived* from high-level requirements, derived requirements, and design constraints from which source code can be directly implemented without further information.
- Assumes continuous refinement process with constraints on lower abstraction levels examples $a/c \rightarrow Sys \rightarrow SW...$

Equivalent high-level requirements representations

- A. The airplane shall display the localizer-arm indication when the pilot has selected the localizer mode and there is a valid localizer signal.
- B. The autopilot shall display the localizer-arm mode when the autopilot detects localizer mode button has been depressed and the localizer flag is valid.
- C. The autopilot shall display LocArm mode when (LocModeSel = True) .AND. (LocModeSel=stable).AND. (LocRecvr = True) .
- D.

Problem: abstraction gap

Indisputable high-level requirements development tools

0.5

u_hat

0.02

VAPS

MBD tool credit and DO-178B

- 178B refinement model (rewriting errors)
- Abstraction gaps and qualification approach
 - (HLR to LLR) vs (.src to .obj)
 - HLR to .obj
- Out-of-the-box vs whole-table approach vs objective-by-objective approach
- MBD composed of a set of tools boils down to tool qualification

Tool credit

- Goal of objectives: to reduce in-service errors by operating on error classes
- Approach using Annex A
 - What objectives are being made obsolete?
 - How are associated errors mitigated?
- Approach using alternate means (safety case)
 - How is correct behavior assured?
 - How are emergent errors mitigated?
 - What is the role of properties?

Criteria for Annex A objectives

- Objective satisfied by tool partially/fully
- Objective requires manual conventional effort partially/fully
- Assumptions needed for satisfaction
 - User (restricted constructs, use of tool, etc.)
 - Development environment (host, compilers, options, etc.)
 - Target environment (i386, PPC, I/O, etc.)
 - Execution environment (RTOS, scheduling, data formats, additional procedures, etc.)

Compliance data

- Credit analysis document (178B section 11.32)
- Organize by table or by objective
- Similar to AC 20-148 (RSC)
 - Credit (full/partial)
 - Assumptions
 - Additional activities and associated evidence

Example form

• Free template: cathy.vierthaler@certification.com

	Verification of outputs of software coding and integration processes	Credit assessment	Assump- tions	Additional user activities	Credit justification
5-1	Source code complies with low-level requirements. 6.3.4a				
5-2	Source code complies with software architecture. 6.3.4b				
5-3	Source code is verifiable. 6.3.4c				
5-4	Source code conforms to standards, 6.3.4d				
5-5	Source code is traceable to low-level requirements. 6.3.4e				
5-6	Source code is accurate and consistent. 6.3.4f				
5-7	Output of software integration process is complete and correct. 6.3.5				

Example: Annex A, Table A5 Source Code

- Traceability/compliance LLR
- Goodness
- Standards compliance
- Architecture compliance
- Integration complete

- Criteria
 - Satisfied by tool (partial/full)
 - Satisfied conventionally (partial/full)
 - What can go wrong
 - Assumptions
 - Additional activities

The great execution debate

CSI -

Call for conviction

- Guilty of applying superior design approaches
- Use of circumstantial evidence vs. good forensics